一:问题引出

要求将统计结果按照条件输出到不同文件中(分区)。比如:将统计结果按照手机 归属地不同省份输出到不同文件中(分区)

二:默认Partitioner分区

1
2
3
4
5
public class HashPartitioner<K, V> extends Partitioner<K, V> {
public int getPartition(K key, V value, int numReduceTasks) {
return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks;
}
}
  • 默认分区是根据key的hashCode对ReduceTasks个数取模得到的。用户没法控制哪个 key存储到哪个分区。

三:自定义Partitioner 步骤

3.1 自定义类继承Partitioner,重写getPartition()方法

1
2
3
4
5
6
7
8
public class CustomPartitioner extends Partitioner<Text, FlowBean> {
@Override
public int getPartition(Text key, FlowBean value, int numPartitions) {
// 控制分区代码逻辑
… …
return partition;
}
}

3.2 在Job驱动中,设置自定义Partitioner

1
job.setPartitionerClass(CustomPartitioner.class);

3.3 自定义Partition后,要根据自定义Partitioner的逻辑设置相应数量的ReduceTask

1
job.setNumReduceTasks(5);

四:分区总结

(1)如果ReduceTask的数量> getPartition的结果数,则会多产生几个空的输出文件part-r-000xx;

(2)如果1<ReduceTask的数量<getPartition的结果数,则有一部分分区数据无处安放,会Exception;

(3)如 果ReduceTask的数量=1,则不管MapTask端输出多少个分区文件,最终结果都交给这一个 ReduceTask,最终也就只会产生一个结果文件 part-r-00000;

(4)分区号必须从零开始,逐一累加。

五:案例分析

  • 例如:假设自定义分区数为5,则
    • (1)job.setNumReduceTasks(1);
    • (2)job.setNumReduceTasks(2);
    • (3)job.setNumReduceTasks(6); 会正常运行,只不过会产生一个输出文件 会报错 大于5,程序会正常运行,会产生空文件

六:Partition 分区案例实操

6.1 需求

将统计结果按照手机归属地不同省份输出到不同文件中(分区);

(1)输入数据

  • phone_data .txt

(2)期望输出数据

  • 手机号 136、137、138、139 开头都分别放到一个独立的 4 个文件中,其他开头的放到 一个文件中。

6.2 需求分析

6.3 代码实现

(1)增加分区类

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
package cn.aiyingke.mapreduce.partition;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;

/**
* Author: Rupert Tears
* Date: Created in 17:17 2022/12/18
* Description: Thought is already is late, exactly is the earliest time.
*/
public class ProvincePartitioner extends Partitioner<Text, FlowBean> {
@Override
public int getPartition(Text text, FlowBean flowBean, int i) {

// 获取手机号前三位 prePhone
String phone = text.toString();
final String prePhone = phone.substring(0, 3);

// 定义一个分区号变量partition,根据prePhone设置分区号
int partition;

switch (prePhone) {
case "136":
partition = 0;
break;
case "137":
partition = 1;
break;
case "138":
partition = 2;
break;
case "139":
partition = 3;
break;
default:
partition = 4;
break;
}

// 最后返回分区号 partition
return partition;

}
}

(2)在驱动函数中增加自定义数据分区设置和 ReduceTask 设置

1
2
3
4
// 指定自定义分区
job.setPartitionerClass(ProvincePartitioner.class);
// 同时指定相应数量的 ReduceTask
job.setNumReduceTasks(5);

(3)驱动器类

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
package cn.aiyingke.mapreduce.partition;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

/**
* Author: Rupert Tears
* Date: Created in 22:14 2022/12/17
* Description: Thought is already is late, exactly is the earliest time.
*/
public class FlowDriver {
public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {

// 1.获取job对象
final Configuration configuration = new Configuration();
final Job job = Job.getInstance();

// 2.关联 driver mapper reducer
job.setJarByClass(FlowDriver.class);
job.setMapperClass(FlowMapper.class);
job.setReducerClass(FlowReducer.class);

// 3.设置 map 端输出 KV 类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(FlowBean.class);

// 4.设置程序最终输出 KV 类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowBean.class);

// 指定自定义分区
job.setPartitionerClass(ProvincePartitioner.class);

// 同时指定相应数量的 ReduceTask
job.setNumReduceTasks(5);

// 5.设置程序输入输出路径
FileInputFormat.setInputPaths(job, new Path("Y:\\Temp\\phone_data.txt"));
FileOutputFormat.setOutputPath(job, new Path("Y:\\Temp\\output1234\\"));

// 6.提交job
final boolean b = job.waitForCompletion(true);
System.exit(b ? 0 : 1);
}
}

(4)Mapper 类

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
package cn.aiyingke.mapreduce.partition;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

/**
* Author: Rupert Tears
* Date: Created in 21:59 2022/12/17
* Description: Thought is already is late, exactly is the earliest time.
*/
public class FlowMapper extends Mapper<LongWritable, Text, Text, FlowBean> {

private final Text outK = new Text();
private final FlowBean outV = new FlowBean();

@Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, FlowBean>.Context context) throws IOException, InterruptedException {

// 1.获取一行数据
final String line = value.toString();

// 2.切割数据
final String[] split = line.split("\t");

// 3.抓取手机号、上行流量、下行流量
final String phone = split[1];
final String upFlow = split[split.length - 3];
final String downFlow = split[split.length - 2];

// 4.封装 outK outV
outK.set(phone);
outV.setUpFlow(Long.parseLong(upFlow));
outV.setDownFlow(Long.parseLong(downFlow));
outV.setSumFlow();

// 5.写出 outK outV
context.write(outK, outV);
}
}

(5)Reducer 类

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
package cn.aiyingke.mapreduce.partition;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

/**
* Author: Rupert Tears
* Date: Created in 22:07 2022/12/17
* Description: Thought is already is late, exactly is the earliest time.
*/
public class FlowReducer extends Reducer<Text, FlowBean, Text, FlowBean> {

private final FlowBean outV = new FlowBean();

@Override
protected void reduce(Text key, Iterable<FlowBean> values, Reducer<Text, FlowBean, Text, FlowBean>.Context context) throws IOException, InterruptedException {

long totalUpFlow = 0;
long totalDownFlow = 0;

// 1.遍历values,将其中的上行流量和下行流量分别累计
for (FlowBean value : values) {
totalUpFlow += value.getUpFlow();
totalDownFlow += value.getDownFlow();
}

// 2.封装 outKV
outV.setUpFlow(totalUpFlow);
outV.setDownFlow(totalDownFlow);
outV.setSumFlow();

// 3.写出 outK outV
context.write(key, outV);
}
}

(6)实体类

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
package cn.aiyingke.mapreduce.partition;

import lombok.Getter;
import lombok.Setter;
import org.apache.hadoop.io.Writable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

/**
* Author: Rupert Tears
* Date: Created in 21:40 2022/12/17
* Description: Thought is already is late, exactly is the earliest time.
*/
@Getter
@Setter
public class FlowBean implements Writable {

private long upFlow;
private long downFlow;
private long sumFlow;


public FlowBean() {
}

public void setSumFlow() {
this.sumFlow = this.upFlow + this.downFlow;
}

@Override
public void write(DataOutput dataOutput) throws IOException {
dataOutput.writeLong(upFlow);
dataOutput.writeLong(downFlow);
dataOutput.writeLong(sumFlow);
}

@Override
public void readFields(DataInput dataInput) throws IOException {
this.upFlow = dataInput.readLong();
this.downFlow = dataInput.readLong();
this.sumFlow = dataInput.readLong();
}

@Override
public String toString() {
return upFlow + "\t" + downFlow + "\t" + sumFlow;
}
}