一:序列化概述

1.1 什么是序列化?

  • 序列化就是把内存中的对象,转换成字节序列(或其他数据传输协议)以便于存储到磁 盘(持久化)和网络传输。
  • 反序列化就是将收到字节序列(或其他数据传输协议)或者是磁盘的持久化数据,转换 成内存中的对象。

1.2 为什么要序列化?

一般来说,“活的”对象只生存在内存里,关机断电就没有了。而且“活的”对象只能 由本地的进程使用,不能被发送到网络上的另外一台计算机。 然而序列化可以存储“活的” 对象,可以将“活的”对象发送到远程计算机。

1.3 为什么不用 Java 的序列化?

Java 的序列化是一个重量级序列化框架(Serializable),一个对象被序列化后,会附带 很多额外的信息(各种校验信息,Header,继承体系等),不便于在网络中高效传输。所以, Hadoop 自己开发了一套序列化机制(Writable)。

1.4 Hadoop 序列化特点

(1)紧凑 :高效使用存储空间。

(2)快速:读写数据的额外开销小。

(3)互操作:支持多语言的交互。

二:自定义 bean 对象实现序列化接口(Writable)

在企业开发中往往常用的基本序列化类型不能满足所有需求,比如在 Hadoop 框架内部 传递一个 bean 对象,那么该对象就需要实现序列化接口。

具体实现 bean 对象序列化步骤如下 7 步:

2.1 必须实现 Writable 接口

2.2 反序列化时,需要反射调用空参构造函数,所以必须有空参构造

1
2
3
public FlowBean() {
super();
}

2.3 重写序列化方法

1
2
3
4
5
6
@Override
public void write(DataOutput out) throws IOException {
out.writeLong(upFlow);
out.writeLong(downFlow);
out.writeLong(sumFlow);
}

2.4 重写反序列化方法

1
2
3
4
5
6
@Override
public void readFields(DataInput in) throws IOException {
upFlow = in.readLong();
downFlow = in.readLong();
sumFlow = in.readLong();
}

2.5 注意反序列化的顺序和序列化的顺序完全一致

2.6 要想把结果显示在文件中,需要重写 toString(),可用”\t”分开,方便后续用。

2.7 如果需要将自定义的 bean 放在 key 中传输,则还需要实现 Comparable 接口,因为 MapReduce 框中的 Shuffle 过程要求对 key 必须能排序。

1
2
3
4
5
@Override
public int compareTo(FlowBean o) {
// 倒序排列,从大到小
return this.sumFlow > o.getSumFlow() ? -1 : 1;
}

三:序列化案例实操

3.1 需求

统计每一个手机号耗费的总上行流量、总下行流量、总流量

(1)输入数据

phone_data.txt

(2)输入数据格式

(3)期望输出数据格式

3.2 需求分析

3.3 编写 MapReduce 程序

(1)编写流量统计的 Bean 对象

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
package cn.aiyingke.mapreduce.writable;

import lombok.Getter;
import lombok.Setter;
import org.apache.hadoop.io.Writable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

/**
* Author: Rupert Tears
* Date: Created in 21:40 2022/12/17
* Description: Thought is already is late, exactly is the earliest time.
*/
@Getter
@Setter
public class FlowBean implements Writable {

private long upFlow;
private long downFlow;
private long sumFlow;


public FlowBean() {
}

public void setSumFlow() {
this.sumFlow = this.upFlow + this.downFlow;
}

@Override
public void write(DataOutput dataOutput) throws IOException {
dataOutput.writeLong(upFlow);
dataOutput.writeLong(downFlow);
dataOutput.writeLong(sumFlow);
}

@Override
public void readFields(DataInput dataInput) throws IOException {
this.upFlow = dataInput.readLong();
this.downFlow = dataInput.readLong();
this.sumFlow = dataInput.readLong();
}

@Override
public String toString() {
return upFlow + "\t" + downFlow + "\t" + sumFlow;
}
}

(2)编写 Mapper 类

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
package cn.aiyingke.mapreduce.writable;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

/**
* Author: Rupert Tears
* Date: Created in 21:59 2022/12/17
* Description: Thought is already is late, exactly is the earliest time.
*/
public class FlowMapper extends Mapper<LongWritable, Text, Text, FlowBean> {

private final Text outK = new Text();
private final FlowBean outV = new FlowBean();

@Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, FlowBean>.Context context) throws IOException, InterruptedException {

// 1.获取一行数据
final String line = value.toString();

// 2.切割数据
final String[] split = line.split("\t");

// 3.抓取手机号、上行流量、下行流量
final String phone = split[1];
final String upFlow = split[split.length - 3];
final String downFlow = split[split.length - 2];

// 4.封装 outK outV
outK.set(phone);
outV.setUpFlow(Long.parseLong(upFlow));
outV.setDownFlow(Long.parseLong(downFlow));
outV.setSumFlow();

// 5.写出 outK outV
context.write(outK, outV);
}
}

(3)编写 Reducer 类

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
package cn.aiyingke.mapreduce.writable;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

/**
* Author: Rupert Tears
* Date: Created in 22:07 2022/12/17
* Description: Thought is already is late, exactly is the earliest time.
*/
public class FlowReducer extends Reducer<Text, FlowBean, Text, FlowBean> {

private final FlowBean outV = new FlowBean();

@Override
protected void reduce(Text key, Iterable<FlowBean> values, Reducer<Text, FlowBean, Text, FlowBean>.Context context) throws IOException, InterruptedException {

long totalUpFlow = 0;
long totalDownFlow = 0;

// 1.遍历values,将其中的上行流量和下行流量分别累计
for (FlowBean value : values) {
totalUpFlow += value.getUpFlow();
totalDownFlow += value.getDownFlow();
}

// 2.封装 outKV
outV.setUpFlow(totalUpFlow);
outV.setDownFlow(totalDownFlow);
outV.setSumFlow();

// 3.写出 outK outV
context.write(key, outV);
}
}

(4)编写 Driver 驱动类

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
package cn.aiyingke.mapreduce.writable;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

/**
* Author: Rupert Tears
* Date: Created in 22:14 2022/12/17
* Description: Thought is already is late, exactly is the earliest time.
*/
public class FlowDriver {
public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {

// 1.获取job对象
final Configuration configuration = new Configuration();
final Job job = Job.getInstance();

// 2.关联 driver mapper reducer
job.setJarByClass(FlowDriver.class);
job.setMapperClass(FlowMapper.class);
job.setReducerClass(FlowReducer.class);

// 3.设置 map 端输出 KV 类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(FlowBean.class);

// 4.设置程序最终输出 KV 类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowBean.class);

// 5.设置程序输入输出路径
FileInputFormat.setInputPaths(job, new Path("Y:\\Temp\\phone_data.txt"));
FileOutputFormat.setOutputPath(job, new Path("Y:\\Temp\\output2\\"));

// 6.提交job
final boolean b = job.waitForCompletion(true);
System.exit(b ? 0 : 1);
}
}