环境配置及基础实操

一:下载、安装 Python

二:下载、安装 Anaconda

三:新建开发环境、安装 Jupyter notebook

新建开发环境

  • 创建新环境:conda create -n env_name
  • 激活新环境:conda active env_name
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
(base) C:\Users\lenovo>conda create -n imooc_ai
Collecting package metadata (current_repodata.json): done
Solving environment: done

## Package Plan ##

environment location: Y:\SoftWare\anaconda\Anaconda3\envs\imooc_ai



Proceed ([y]/n)? y

Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
# To activate this environment, use
#
# $ conda activate imooc_ai
#
# To deactivate an active environment, use
#
# $ conda deactivate

Retrieving notices: ...working... done

(base) C:\Users\lenovo>conda activate imooc_ai

四:Jupyter notebook 界面优化

借助开源项目,对界面进行优化,

项目地址:https://github.com/dunovank/jupyter-themes

Install with pip

1
2
3
4
5
# install jupyterthemes
pip install jupyterthemes

# upgrade to latest version
pip install --upgrade jupyterthemes

配置

1
jt -t grade3 -f fira -fs 16 -cellw 90% -ofs 11 -dfs 11 -T

五:Python 语法实操

1
2
3
4
5
6
# python 基本语法:基本运算、列表生成、函数、模块引入
a = 1
b = 2
print(a,b)

1 2
1
2
3
4
c = a + b
print(c)

3
1
2
3
4
a = [1,2,3,4]
print(type(a),a)

<class 'list'> [1, 2, 3, 4]
1
2
3
4
b = [x+10 for x in a]
print(type(b),b)

<class 'list'> [11, 12, 13, 14]
1
2
3
4
# 创建加法运算函数
def plusFunction(x1,x2):
x = x1 + x2
return x
1
2
3
4
5
6
a = 1
b = 2
c = plusFunction(a,b)
print(type(c),c)

<class 'int'> 3
1
2
3
4
5
6
# 库模块引入
import random
m = random.random()
print(m)

0.21730372821275368
1
2
3
4
5
6
7
8
9
10
11
12
13
14
for i in [1,2,3,4,5,6,7,8,9,10]:
m_i = random.random()
print(m_i)

0.22372759310304402
0.15114745033159727
0.18443572156105592
0.8748129421654894
0.532564243518567
0.27301908385530627
0.3783824153668166
0.7295293943105771
0.1718886842112275
0.45445079430510904

六:Matplotlib 实操

1
2
3
4
5
6
import matplotlib
x = [1,2,3,4,5]
y = [2,3,4,5,6]
print(x,y)

[1, 2, 3, 4, 5] [2, 3, 4, 5, 6]
1
2
3
4
from matplotlib import pyplot as plt
fig1 = plt.figure(figsize=(5,5))
plt.plot(x,y)
plt.show()
1
2
3
4
5
6
fig2 = plt.figure(figsize=(5,5))
plt.scatter(x,y)
plt.title("x vs y")
plt.xlabel("x")
plt.ylabel("y")
plt.show()

七:Numpy 实操

1
2
3
4
5
6
7
8
9
10
11
import numpy as np
a = np.eye(5)
print(type(a))
print(a)

<class 'numpy.ndarray'>
[[1. 0. 0. 0. 0.]
[0. 1. 0. 0. 0.]
[0. 0. 1. 0. 0.]
[0. 0. 0. 1. 0.]
[0. 0. 0. 0. 1.]]
1
2
3
4
5
6
7
8
9
10
11
12
b = np.ones([5,5])
print(type(b))
print(b)
print(b.shape)

<class 'numpy.ndarray'>
[[1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1.]]
(5, 5)
1
2
3
4
5
6
7
8
9
10
11
12
c = a + b
print(type(c))
print(c.shape)
print(c)

<class 'numpy.ndarray'>
(5, 5)
[[2. 1. 1. 1. 1.]
[1. 2. 1. 1. 1.]
[1. 1. 2. 1. 1.]
[1. 1. 1. 2. 1.]
[1. 1. 1. 1. 2.]]

八:Pandas 实操

1
2
3
4
5
6
7
8
9
10
11
import pandas as pd
data = pd.read_csv("Y:\\temp\\data\\date.csv")
print(type(data))
print(data)

<class 'pandas.core.frame.DataFrame'>
x y
0 1 2
1 2 3
2 3 4
3 5 4
1
2
3
4
5
6
7
8
9
10
11
x = data.loc[:,'x']
print(type(x))
y = data.loc[:,'y']
print(y)

<class 'pandas.core.series.Series'>
0 2
1 3
2 4
3 4
Name: y, dtype: int64
1
2
3
4
5
6
c = data.loc[:,'x'][y>3]
print(c)

2 3
3 5
Name: x, dtype: int64
1
2
3
4
5
6
7
8
9
data_array = np.array(data)
print(type(data_array))
print(data_array)

<class 'numpy.ndarray'>
[[1 2]
[2 3]
[3 4]
[5 4]]
1
2
3
4
5
6
7
8
9
data_new = data + 10
data_new.head()


x y
0 11 12
1 12 13
2 13 14
3 15 14
1
2
# data to csv file 
data_new.to_csv('Y:\\temp\\data\\data.csv')